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Figure 1: Our model learns a disentangled and interpretable latent space of appearance in a self-supervised manner, without human-
annotated data. Given an input image depicting a homogeneous object (left), it can be encoded into this space, which can then be traversed
to generate meaningful variations of appearance (here, traversals along two dimensions encoding hue and gloss are shown). This encoded
representation of appearance can be leveraged for appearance transfer and editing tasks: Given a target geometry (bottom left), we can
transfer to it either the original appearance, or variations along any of the dimensions of the space (center). Since the space is disentangled
and interpretable, it also enables selective appearance transfer (right): The resulting image (bottom right) is generated by selecting specific
dimensions from each of the three inputs.

Abstract
We present a method that computes an interpretable representation of material appearance within a highly compact, disentan-
gled latent space. This representation is learned in a self-supervised fashion using a VAE-based model. We train our model with
a carefully designed unlabeled dataset, avoiding possible biases induced by human-generated labels. Our model demonstrates
strong disentanglement and interpretability by effectively encoding material appearance and illumination, despite the absence
of explicit supervision. To showcase the capabilities of such a representation, we leverage it for two proof-of-concept applica-
tions: image-based appearance transfer and editing. Our representation is used to condition a diffusion pipeline that transfers
the appearance of one or more images onto a target geometry, and allows the user to further edit the resulting appearance. This
approach offers fine-grained control over the generated results: thanks to the well-structured compact latent space, users can
intuitively manipulate attributes such as hue or glossiness in image space to achieve the desired final appearance.

Keywords: Latent representations; material appearance; self-supervised learning
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1. Introduction

The visual appearance of a material in an image arises from the
complex interplay of the material’s reflectance properties, the light-

ing conditions, and the geometry of the object it is applied to. The
combination of these gives rise to the proximal stimulus, which
reaches our retinae and is interpreted by our visual system. Ade-
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quately characterizing material appearance is a fundamental goal of
computer graphics. Traditionally, material properties are modeled
through reflectance distribution functions, expressed either analyt-
ically, or in the form of tabulated data [MPBM03; DJ18]. More re-
cent works rely on neural processes [ZZW*21] or SVBRDF maps,
which allow characterization of complex textured materials from a
single or few images [DAD*18; VMR*24]. These representations,
while well suited for rendering, suffer from high-dimensionality,
limited expressiveness, or a lack of interpretability, which hinders
downstream tasks such as material compression or editing.

For these reasons, a number of works have been devoted
to finding compact representations of material appearance, fo-
cusing on compression [HGC*20], interpolation [SSN18], ed-
itability [SWSR21], or the perceptual nature of the representa-
tion [SGM*16]. Depending on the application domain, different
properties, such as interpretability or independence of dimensions,
may be desirable in such representation. When aiming for inter-
pretable spaces, existing approaches often rely on large quantities
of human-annotated data. These are very costly to obtain, even
more so across different attributes [SCW*21; DLC*22]. Besides,
it is unclear a priori which attributes these should be [MPBM03;
SGM*16; TGG*20]. Consequently, in this work we explore the use
of self-supervised learning for identifying the underlying factors
that determine material appearance, avoiding the need for labeled
data in the creation of an interpretable and controllable latent space.

We leverage FactorVAE [KM18], a well-known method for dis-
entangled representation learning, and build upon it to adapt it to
our scenario. Specifically, we modify its original architecture to in-
corporate geometry information in the decoder, enforcing the bot-
tleneck to learn the appearance separate from the geometry, and
we also modify its loss function to avoid posterior collapse in our
setup. Further, we carefully design a synthetic dataset that enables
the FactorVAE to learn, in a self-supervised manner, explainable
and independent dimensions encoding material appearance of ho-
mogeneous, opaque objects. Notably, and unlike many previous ap-
proaches, we work in image space, which has two advantages: first,
we can encode the appearance of objects from images in the wild,
and second, our model encodes visual appearance of the material,
and not only material properties.

Our appearance encoder model thus enables encoding an input
image, depicting an object, into a six-dimensional disentangled rep-
resentation of the appearance of the object in the image. Despite the
model being trained without labeled data, the six dimensions are
interpretable, and encode hue (two dimensions), illumination (two
dimensions), lightness and glossiness (note that both the illumina-
tion and the reflectance properties are included in this appearance
representation). Since they are disentangled, the latent variable con-
trolling gloss will change only with variation in object gloss, while
the rest will remain constant. This greatly facilitates controllability,
and therefore applications like editing, or selective attribute trans-
fer. Fig. 1, left, shows the traversal of our learned latent space along
the subspace spanned by two of its dimensions.

We demonstrate the potential of this disentangled, interpretable
and controllable space for two applications: appearance transfer
and editing (Fig. 1, center). We do this by using the latent ap-
pearance representation as a guidance to train a second model: a

lightweight IP-Adapter [YZL*23] which effectively translates the
information from the latent space to a diffusion pipeline, leverag-
ing their generative ability. Specifically, we use a pre-trained latent
diffusion model, based on Stable Diffusion XL [PEL*], and condi-
tion the generative process through two distinct branches: one that
encodes the appearance via our latent space, and another one to
integrate the target geometry. In this way, the appearance branch
can either encode directly the appearance of a material in an in-
put image (transfer) or be edited to generate variations of an exist-
ing material (editing). Interestingly, under this scheme, appearance
transfer can be done from a single input image, or from multiple,
performing selective attribute transfer from each; an example of
this is shown in Fig. 1, right, where the appearance in the final im-
age results from combining the hue of an exemplar, the gloss and
lightness of another, and the geometry and illumination of a third
one.

Performing appearance transfer in this way has advantages over
existing approaches [CSM*24], since it offers a better disentangle-
ment between appearance and geometry, and therefore more con-
trol over the transfer. This increased control is also an advantage of
our method when compared to other methods for diffusion-based
image editing [BHE23]: Diffusion models are typically trained
on text-image pairs, relying on text prompts as the primary condi-
tioning method. Despite its wide expressivity, the text-only control
introduces ambiguities that can significantly limit its application
for the particular case of material appearance, thus benefiting from
image-based conditioning.

Overall, our latent representation offers increased controllabil-
ity and interpretability, demonstrating its potential for appearance
transfer and editing. We therefore make the following contribu-
tions:

• A self-supervised model that encodes an object in an input image
into a disentangled and interpretable representation of its appear-
ance.

• A large-scale dataset of almost 100,000 synthetic images care-
fully designed for self-supervised learning of homogeneous ma-
terial appearance.

• Application of our representation to flexible appearance transfer
and editing, through conditioning of a diffusion-based pipeline.

Our trained models, code, and dataset are available in
http://graphics.unizar.es/projects/mat_
disentanglement_2025/

2. Related Work

2.1. Low-Dimensional Material Appearance Representations

Material appearance is shaped by complex interactions between
several factors, including surface properties, lighting, geometry,
or viewing conditions [FDA03; LSGM21], often requiring high-
dimensional data for accurate modeling. A number of works have
attempted to find a compact representation of appearance, search-
ing for low-dimensional BRDF or BTF embeddings [MPBM03;
RJGW19; RGJW20; Kuz21], enabling applications such as com-
pression or editing. However, they usually require costly human-
annotated datasets [SGM*16; TGG*20; SWSR21], or produce
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spaces that lack interpretability because their focus is on some
other aspect, such as compression [HGC*20; SSN18; ZZW*21].
While the former work in material space, a series of approaches
have focused on working directly in image space, to account for
the interplay of confounding factors like geometry or illumination
in the final perception of appearance [LMS*19; SCW*21]. Still,
they rely on supervised learning-based methods and require large
amounts of human annotations, which can be partially alleviated
with weak supervision [GSS*24]. Some methods have focused di-
rectly on material editing in image space [DLC*22; SL23], lever-
aging GAN-based frameworks to allow controlled modification of
specific attributes, like glossiness or metallicness, and also requir-
ing ground-truth human labels for training. Unsupervised learning
of appearance representations has been mostly limited to specific
attributes, like gloss [SAF21] or translucency [LSX23], training on
datasets with limited variability. In this work, we present a self-
supervised model that learns a highly-compact latent space of ma-
terial appearance. Remarkably, our model can disentangle inter-
pretable factors like color or glossiness in images depicting ho-
mogeneous real-world materials, without any prior knowledge or
annotated data.

2.2. Disentangled Representation Learning

Disentangled representation learning [WCWZ*24; LBL*19] aims
to separate underlying factors of variation within data, improv-
ing interpretability in generative models. Variational Autoencoders
(VAEs), including βVAE [HMP*17], achieve this by balancing re-
construction fidelity and latent space regularization, while Factor-
VAE [KM18] introduces a Total Correlation (TC) penalty via a
discriminator network to enhance factor independence. Extensions
like βTCVAE [CLGD18] propose different implementations of this
TC term. A key challenge in these models is the posterior collapse,
where latent variables lose informativeness by matching the prior
too closely. Due to its relevance, this issue has been widely ad-
dressed [SRM*16; FLL*19; YWY*20; KOF*23]. Beyond VAEs,
GAN-based [CDH*16] and diffusion models [YWLZ23] have also
been explored for disentanglement. Nevertheless, the explicit mod-
eling of a latent space in VAE-based models facilitates learning
independent factors within a compact representation. Closer to our
work is that of Benamira et al. [BSP22], that used βVAE to disen-
tangle material appearance from measured BRDFs. In contrast, our
model disentangles material appearance in image space, account-
ing for the influence of factors like illumination or geometry. We
adapt FactorVAE to mitigate posterior collapse, and enable a self-
supervised disentangled latent space to encode and modify material
appearance (see Sec. 3).

2.3. Diffusion-Based Material Transfer and Editing

Since the seminal work from Ho et al. [HJA20], diffusion
models have revolutionized image generation with exceptional
quality and diversity, by progressively denoising from random
noise [SCS*22; BGJ*23; RBL*22]. Conditioning mechanisms
have recently played a central role to expand the functionality of
diffusion models for controlled generation and editing. These in-
clude techniques like ControlNet [ZRA23] for multi-modal con-
ditioning, LoRA [HSW*22] for task-specific fine-tuning, or IP-

Adapter [YZL*23] and T2I-Adapter [MWX*24] for image-based
conditioning, by injecting features from reference images along-
side text prompts to influence the generation.

In the context of material appearance, diffusion models have
been used for material generation [ZLX*24], physically-based syn-
thesis [VBP*24], material capture [VMR*24], or texture edit-
ing [GHR*24]. In ColorPeel [BWVvdW24], they condition diffu-
sion models on disentangled properties like color and texture, al-
lowing for fine-grained editing but requiring labeled data to train
the conditioning, which complicates generalization to novel proper-
ties. Cheng et al. [CSM*24] demonstrated zero-shot material trans-
fer by injecting CLIP [RKH*21] embeddings of reference mate-
rials into a diffusion pipeline, achieving compelling results with-
out any additional model training. However, their reliance on CLIP
limits disentanglement between material properties and additional
factors, such as lighting and geometry. Alchemist [SJL*24] showed
impressive performance on material editing in image space, train-
ing diffusion models for specific material attributes with supervised
ground-truth labels.

In our work, we train an IP-Adapter to condition a pre-trained
diffusion model based on Stable Diffusion-XL [PEL*] on our com-
pact self-supervised appearance representation, to showcase proof-
of-concept applications of it (namely, appearance transfer and edit-
ing).

3. A Disentangled Latent Space for Appearance

In this section, we seek a material latent representation that dis-
entangles the underlying factors responsible for its appearance in
a given image. To do this, we train a variational autoencoder that
reconstructs the appearance of an input image, while enforcing a la-
tent space with independent dimensions encoding this appearance.
The model (Sec. 3.1) takes as input an image of an object, made
from a homogeneous material, and encodes it into a disentangled
latent representation of the material’s appearance in that image; this
representation includes both the reflectance and the illumination. It
can also decode such a representation, together with an input nor-
mal map, into an image of an object made of such material, whose
geometry is determined by the input normals. This model is trained
in a self-supervised manner, leveraging a dataset of almost 100,000
images specifically created for representation learning of material
appearance (Sec. 3.2). We analyze the resulting latent space and the
model’s reconstruction ability in Sec. 4.

3.1. Method

We employ an encoder-decoder architecture to create a bottle-
neck of reduced dimensionality that encapsulates the internal rep-
resentation of appearance (Fig. 2). We build our model on Factor-
VAE [KM18], a variational autoencoder for self-supervised learn-
ing of disentangled representations, for its effective balance be-
tween disentanglement and reconstruction quality. We introduce
two key modifications to the original FactorVAE to make it suit-
able for our goal: (1) we modify the loss to avoid posterior collapse
(Sec. 3.1.1), and (2) we input geometry information to the model in
the form of normal maps, compelling the latent space to focus on
appearance (Sec. 3.1.2).
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Figure 2: Diagram of our VAE-based architecture. The encoder
creates a low-dimensional, disentangled representation f of the ap-
pearance of the input image. The decoder learns to apply the in-
coming appearance to a reference geometry, specified with a nor-
mal map, which is concatenated in the decoder pipeline. The red
box illustrates the discriminator used to compute the TC term (see
text for details).

3.1.1. Avoiding Posterior Collapse

The training loss proposed in the FactorVAE paper enforces the
reconstruction of the input image, and the informativeness and in-
dependence of the dimensions of the latent space. To do so, it has
three distinct terms: a term for reconstruction quality, a regulariza-
tion term, and a term enforcing independence between factors (or
Total Correlation term, TC). VAE-based models like this one, how-
ever, often suffer from a phenomenon called posterior collapse, in
which the distribution learned by the encoder collapses to its prior,
thus storing no relevant information about the generative factors of
data [KM18; LTGN19]. Our proposed loss function Lθ,φ therefore
is based on that of FactorVAE, with some modifications to avoid
posterior collapse. It has the following formulation:

Lθ,φ(x) = Ez∼qθ(z|x)
[
log pφ(x | z)

]
−βDKL(qθ(z | x), p(z),n)− γDKL(qθ(z), q̄θ(z),1),

(1)

where

q̄θ(z) :=
d

∏
j=1

qθ

(
z j
)
,DKL(Q,P,n) :=

∥∥∥∥1
2
(µ2 +σ

2 − log(σ2)−1)
∥∥∥∥n

In Eq. 1, the probabilistic encoder p(z | x) is approximated to the
distribution qθ(z | x), where θ corresponds to the weights learned by
the network, and x describes a sample represented as z in the latent
space. Analogously, pφ(x | z) represents the probabilistic decoder,
approximated with the weights φ.

For the reconstruction term we use a smooth L1 loss [Gir15]
between the input image and the reconstructed one.

The second term serves as a regularizer of the latent space by
minimizing the dimension-wise Kullback-Leibler (KL) divergence
between the learned distribution and a prior p(z). Being a varia-
tional model, the standard choice for the prior is a normal distribu-
tion. This term contains two key modifications with respect to the
original formulation, aimed to address the posterior collapse issue.
First, we apply a norm of order n (instead of the default summation)
to the result of the KL operator. This encourages all dimensions to

have a similar distance to the prior, thus storing a similar amount of
information, effectively countering the posterior collapse. Second,
we extend the FactorVAE loss by incorporating a weight β in this
term, not present in the original definition. This weight allows, dur-
ing training, to specify how much the learned distributions should
resemble the prior. Additionally, we apply a linear annealing to the
β term during training [SRM*16]. Gradually increasing the adher-
ence to the prior distribution encourages the model to distribute
information more evenly across the latent dimensions in the early
training stages, further mitigating posterior collapse.

The TC term [Wat60] encourages the model to learn independent
latent dimensions. In our application, this translates to learning dif-
ferent attributes in each dimension of the latent space. Following
the original implementation of FactorVAE [KM18], we compute
this TC term using an external discriminator.

3.1.2. Enforcing Appearance Encoding

In order for our representation to focus on the appearance of the sur-
faces, and not on their geometry, we input geometrical information
to the model, in the form of normal maps, in the decoder [DLC*22],
as shown in Fig. 2. This encourages the representation learnt by the
encoder to focus on the reflectance and illumination. As a result, the
geometry will not be identified as a factor of variation in the latent
space. Moreover, this approach significantly improves the model’s
generalization ability, enabling it to more efficiently learn the de-
sired explainable and independent factors during training.

As a result of the aforementioned adaptations (which we ab-
late in Sec. 4.4 and the supplementary material (S4)), our model
learns a latent space with six dimensions, where each dimension
represents an independent factor of material appearance. This rep-
resents a substantial reduction of dimensionality, from an RGB im-
age (with a spatial resolution of 256 × 256 in our implementation)
into a 6D feature vector f that successfully encodes the material’s
appearance, as shown in Sec. 4. Implementation details can also be
found in the supplementary material (S1.1).

3.2. A Dataset for Material Appearance Disentanglement

Our model is trained in a self-supervised manner, learning to apply
an input appearance onto a reference geometry, while building a
well-structured latent space by optimizing the loss function (Eq. 1).

Existing datasets of material appearance are relatively abun-
dant [SAF21; DLC*22; SCW*21]. However, they often include
simple and unrealistic geometries with limited diversity, or are
highly unbalanced with respect to appearance factors such as
glossiness or hue. This is particularly problematic for our self-
supervised training, as it could introduce unintended biases into
the learned appearance representations. Moreover, we seek for a
larger-scale dataset to improve generalization.

Therefore, we carefully designed a training dataset comprised
of 98,550 synthetic images of 30 different objects rendered with
365 measured BRDFs [MPBM03; DJ18; SCW*21]. In order to fa-
cilitate the understanding of illumination by the network, we sys-
tematically vary the lighting for each object and material combi-
nation, leading to 9 lighting conditions (9 × 30 × 365 = 98,550).

© 2025 The Author(s).
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Table 1: Quantitative metrics obtained by our model and three baselines. All models are trained on our novel dataset (Sec. 3.2), and metrics
are computed on our test dataset. Disentanglement and interpretability metrics are computed analyzing the structure of the latent space,
using ground truth labels when necessary. Reported values are the mean and standard deviation of 5 independent trials, where each trial
computes the metrics with a representative set of images. Arrows indicate desired performance, and the best value for each column is marked
in bold.

Disentanglement Interpretability Reconstruction quality
GTC ↓ MIS ↓ Z-min ↑ MIR ↑ SSIM ↑ LPIPS ↓ PSNR ↑

βVAE - 0.8825 ± 0.0197 0.5498 ± 0.0119 0.2224 ± 0.0046 0.5529 ± 0.0922 0.6642 ± 0.1638 29.129 ± 0.748
βTCVAE - 0.8620 ± 0.0248 0.5717 ± 0.0061 0.2634 ± 0.0078 0.6177 ± 0.0916 0.6266 ± 0.1443 30.082 ± 1.490

FactorVAE 1.0633 0.8556 ± 0.0365 0.5521 ± 0.0041 0.2626 ± 0.0097 0.6556 ± 0.0596 0.5934 ± 0.0984 30.366 ± 1.290
Ours 0.6686 0.8204 ± 0.0514 0.6955 ± 0.0185 0.2940 ± 0.0089 0.6775 ± 0.0646 0.4046 ± 0.0648 30.801 ± 1.130

A representative set of images of the dataset, rendered with Mit-
suba [Jak10], can be found in the supplementary material (S2).

4. Evaluation

We evaluate the ability of our model to find a disentangled latent
space of material appearance, and to encode an input image into a
suitable representation of the depicted material in this space. The
evaluation is done both qualitatively and quantitatively, comparing
its performance with various baselines. Specifically, we look at dis-
entanglement and interpretability of the space, and at reconstruc-
tion quality of the model.

4.1. Quantitative Evaluation

Quantitatively, we compare our method to three baselines that
are commonly used for disentangled representation learning
(Sec. 2.2), all trained on our dataset (Sec. 3.2): βVAE [HMP*17],
βTCVAE [CLGD18] and the vanilla FactorVAE [KM18]. The com-
parison evaluates disentanglement, interpretability and reconstruc-
tion quality. Our test set is comprised of images from the Serrano
dataset [SCW*21]. From it, we select the ones featuring simple ge-
ometries (blob and sphere) to evaluate disentanglement and inter-
pretability, to ensure that the lack of specialization of the baseline
models in terms of geometric disentanglement is not overly penal-
ized. To evaluate reconstruction quality we select images from a
complex, unseen geometry (statuette). Note that, while some ma-
terials are both in our training and test sets, they are rendered with
different illuminations and scene configurations, resulting in dif-
ferent appearance; besides, all baselines we compare to are trained
and tested on the same sets.

Disentanglement is typically measured quantitatively with Gaus-
sian Total Correlation (GTC) [Wat60] and the Mutual Information
Score (MIS) [Sha48], which analyze the structure of the space and
do not require labeled data. Measuring interpretability does require
labeled data, and we measure it with the Z-min [KM18] and Mu-
tual Information Ratio (MIR) [WDGB23] metrics, using ground
truth labels available in the test dataset. We show all four met-
rics in Table 1. Our model clearly surpasses the rest, including
the vanilla FactorVAE, showing the benefits of our modifications
described in Sec. 3.1. Reconstruction quality is evaluated on the
same test data with three widely-used metrics: SSIM [WBSS04],
LPIPS [ZIE*18], and PSNR. Our model achieves better reconstruc-
tions, which can be attributed to the inclusion of geometry informa-
tion in the decoder pipeline.

Lightness

Hue #1

Hue #2

Light dir. #1

Light dir. #2

Gloss

traversal

Figure 3: Prior traversals sampling our 6D latent space. Each
row samples a different dimension of the space, starting from a
neutral, zero-valued feature vector (central column). The feature
vector is fed to the decoder together with the normal map of the
Havran geometry to generate the images shown. Our unsupervised
model yields dimensions that are not only disentangled, but also in-
terpretable, as indicated by the attributes we identify a posteriori.

4.2. Qualitative Evaluation

Qualitatively, we can evaluate the disentanglement and inter-
pretability of our latent space by visualizing the reconstructions
generated by our decoder when sampling the latent space. To visu-
alize the information encoded in the space, we take samples along
each dimension (keeping the rest at a constant value of zero), gen-
erating feature vectors f ∈R6 that are fed into the decoder together
with a normal map. The results are the images shown in the prior
traversals plot in Fig. 3. We chose the normal map of the Havran
geometry for this visualization, as it is commonly used in percep-
tual studies, since it was specifically designed for broad light direc-
tion coverage, better showcasing a BRDF’s appearance [HFM16].
In the figure, each row corresponds to the traversal of one latent
dimension. We can see how the model identifies a slightly glossy
gray material as the neutral one (zero-valued feature vector, cen-
tral column). We can also clearly observe how, despite the lack of
supervision, our model identifies interpretable factors that emerge
from the data: Dimension 1 encodes lightness, dimensions 2 and
3 correspond to hue, dimensions 4 and 5 encode lighting direc-
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Figure 4: Left: For six real-world, photographed objects (rows
“Appearance”, background has been masked), we encode their ap-
pearance with our model and decode it with a given normal map
(“Geometry”). We see how the reconstructed objects (rows “Re-
construction”, showing bunnies and teapots) exhibit the same ap-
pearance as their corresponding images, illustrating the ability of
our model to encode appearance. Right: Posterior traversals of the
latent space for the input image shown, reconstructed with the blob
normal map (see text for details). Black boxes mark the appearance
reconstructed from the input image.

tion (top to bottom and left to right, respectively), and dimension
6 represents gloss. Additional visualizations can be found in the
supplemental material (S3).

Finally, we evaluate the ability of our model to encode the ma-
terial appearance of a given image, and to modify such appear-
ance along the dimensions of our latent space. Fig. 4, left, shows,
for six real-world, photographed objects (the background has been
masked), the result of encoding them with our model and decoding
them using the normal map shown. The very similar appearance
between the original and the reconstructed result shows the ability
of our space to successfully encode the appearance of real objects.
In Fig. 4, right, we also encode an input image of a real object into
the latent space, obtaining its feature vector, and we then sample
this space in each dimension, akin to what was done in the prior
traversals plot in Fig. 3, but with the posterior, leading to posterior
traversals plots. We can see how the material appearance of the
input image is correctly captured (black boxes), and how we can
modify the original appearance in a controlled manner by travers-
ing the dimensions of the latent space. However, despite the great
performance shown by the FactorVAE encoder in successfully dis-
tilling a disentangled and interpretable material appearance repre-
sentation from the input image, the decoder pipeline proves insuf-
ficient when generating images of geometries very different from
those seen during training (see supplementary material (S3.3) for
more details). This highlights the need of a more powerful frame-
work that translates the feature vector obtained into a final image,
which is explored further in Sec. 5.

4.3. Dimensionality of the Latent Space

Our 6-dimensional space is highly compact, as compared to other
alternatives in the literature (e.g., CLIP embeddings [RKH*21] can

Figure 5: Latent space dimensionality analysis. Evolution of met-
rics for interpretability (MIR, higher is better) and disentanglement
(MIS, lower is better) for models whose latent space dimensional-
ity ranges between 3 and 10. Our 6-dimensional space achieves the
best balance between these two properties.

Table 2: Ablation studies. Our final model performs best both in
terms of interpretability, as indicated by the MIR score, and recon-
struction quality, measured with PSNR (see text for details).

MIR↑ PSNR↑
(a) Summation 0.2497 29.12

(b) Maximum β = 1 0.2306 30.08
(c) No β annealing 0.2130 30.36

Without Normals 0.2560 28.60
Ours 0.2940 30.80

be 512D (ViT-B/32, ViT-B/16), 768D (ViT-L/14) or 1024D (ViT-
H/14), and StyleGAN-based autoencoders [KLA19] are 512D and
higher), facilitating interpretability. We explore the effect of mod-
ifying the dimensionality of our space, aiming to keep a balance
between interpretability and disentanglement: larger latent spaces
tend to dilute information in more dimensions, penalizing inter-
pretability, while smaller ones need to embed the same informa-
tion in a more constrained latent space, which often leads to worse
disentanglement.

We analyze models from three to ten dimensions in the latent
space, including quantitative metrics in Fig. 5 and qualitative re-
sults in Fig. 6, in which we show: (1) the factors captured in each
dimension of the latent space, by computing the prior traversals
plots, and (2) the informativeness of the space, by plotting the
dimension-wise KL loss during training. Higher values in this plot
represent that the learned distribution is different from the standard
normal distribution N(0,1), and thus are storing more informa-
tion. Our model with six dimensions achieves the best balance be-
tween interpretability and disentanglement, as represented by MIR
(higher is better) and MIS (lower is better) metrics, respectively
(Fig. 5). This six-dimensional space is also more visually disentan-
gled and interpretable, while not including uninformative dimen-
sions (Fig. 6).

4.4. Ablation Studies

We evaluate the effectiveness of our design decisions by running
ablation studies. We include here ablations on our proposed modifi-
cations of the loss function to tackle posterior collapse (Sec. 3.1.1),
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Figure 6: Prior traversals and KL evolution plots of each model trained with latent space dimensionalities ranging from 3 to 10. KL
evolution plots shows the dimension-wise evolution, during training, of the KL distance between the learned distributions and the standard
normal distribution used to regularize (Sec. 3.1.1). The higher KL distance, the more information is stored in a given dimension.

and on the use of normal maps to enforce the encoding of appear-
ance (Sec. 3.1.2). For additional ablations on the reconstruction loss
and normal map resampling, please refer to the supplementary ma-
terial (S4).

4.4.1. Loss Function

We evaluate the effectiveness of the changes we propose with re-
spect to the vanilla FactorVAE loss by training the following al-
ternatives: (a) a model using the default summation instead of our
proposed norm (i.e., n = 1 in the second term of Eq. 1), (b) a model
with β = 1, and (c) a model without annealing on the β parameter
with our default β = 2. Table 2 shows how systematically removing
our modifications leads to models with reduced interpretability, as
represented by lower MIR values.

4.4.2. Use of Normal Maps

In order to facilitate the disentanglement between appearance and
geometry, we guide the reconstruction done by the model’s decoder
with normal maps. We ablate this modification in Table 2, training
a model without this geometry guidance. As expected, we observe
how leaving out this information diminishes reconstruction quality
of the model, as measured by the PSNR metric. Additionally, the
absence of normals leads to reduced interpretability (lower MIR)
by requiring geometry to be encoded as an additional factor of vari-
ation.
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Figure 7: Diffusion-based pipeline for proof-of-concept applications of our space. Our proposed pipeline uses two branches to condition
the diffusion-based generative process with Stable Diffusion XL (SDXL). The appearance conditioning branch leverages our encoder to
produce a 6D feature vector representing the desired appearance. This representation can be further edited along each of the six dimensions
if desired, providing fine-grained control over the final appearance. The geometry branch leverages ControlNet to condition generation
through Canny edges and depth information. We show here appearance transfer from an input image (bunny) to a target one (David), as well
as editing along different dimensions of the latent space (right). Other uses, such as direct editing or selective transfer, are also possible.

5. Applications: Appearance Transfer and Editing

We leverage our compact and controllable latent space (Sec. 3)
for two applications: appearance transfer, which involves transfer-
ring the appearance of one or more reference exemplars to a target
one, and editing, which modifies the visual appearance of an object
in image space. We showcase these proof-of-concept applications
by using our representation to condition a diffusion-based pipeline
(Sec. 5.1), and evaluate its advantages and limitations (Sec. 5.2).

5.1. Diffusion-Based Pipeline

We design a diffusion-based pipeline that uses two sources of in-
formation as input: a geometry reference image, which defines the
target geometry of the object, and an appearance feature vector in
our latent space, which specifies the desired appearance to be ap-
plied to the target geometry. An overview of our pipeline is shown
in Fig. 7. We use pre-trained latent diffusion model, RealisticVi-
sionXL4.0, which is a fine-tune of the base model Stable Diffusion
XL designed for photo-realism. We add our sources of information
to condition the generative process through two distinct branches:
an appearance conditioning branch and a geometry conditioning
one.

The appearance conditioning branch encodes the material and
illumination information from one or more reference images into

an appearance feature vector by using our encoder (Sec. 3), ef-
fectively performing appearance transfer. Alternatively, one can di-
rectly sample the latent space to generate such vector. Further, the
user can navigate the space, enabling controlled fine-grained ad-
justments to the generated images (appearance editing). Our ap-
pearance encoder, trained as explained in Sec. 3, is kept frozen
during the training of the diffusion pipeline. We integrate the
information of the appearance feature vector by training an IP-
Adapter [YZL*23]. Following the IP-Adapter implementation, we
plug an external network via a cross-attention mechanism, and train
it by minimizing the original Stable Diffusion loss [RBL*22]. Only
the weights of the external network are updated during training, in
order to preserve the generative capabilities of the base model.

The geometry conditioning branch takes an image as input and
incorporates the target geometry information into the diffusion
pipeline via a combination of pre-trained ControlNets [ZRA23],
designed to process Canny edges and depth maps. Depth informa-
tion helps in transferring the general structure of the shape, while
the Canny edges map allows to preserve the high-frequency details.
For inference, we automatically obtain the depth map from the in-
put image using a single-view depth predictor [KOH*24].

Finally, we follow previous work [CSM*24] and use an inpaint-
ing base model during inference, which restricts the generation to
the area of the object, keeping the background intact. Please refer
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Figure 8: Appearance transfer and editing results of our pipeline for real-world images leveraging our disentangled appearance repre-
sentation. In each example, we use two input images, with the leftmost one as the target. We selectively transfer material and/or illumination
properties from the other input image (background has been masked out) by encoding them into our latent space. We can further modify the
appearance in this latent space, leading to fine-grained editing (right).

to the supplementary material for full implementation details and
ablations of our pipeline (S1.2).

Our pipeline is therefore versatile, and can be used for different
applications depending on how the inputs are configured. Fig. 7
illustrates a canonical use case in which the appearance of the
bunny is encoded with our model and transferred to the image of
Michelangelo’s David with our diffusion pipeline, performing ap-
pearance transfer. Once encoded, given the disentanglement and
high controllability of our latent space, the user can easily modify
the appearance vector and re-generate the image, thus performing
fine-grained appearance editing, as shown. Our pipeline is however
flexible to other use cases, such as introducing the same image for
both appearance and geometry conditioning to perform direct edit-
ing (Fig. 11), selective transfer by extracting different factors of
appearance from different input images (Fig. 8 and Fig. 1, right),
manually defining the appearance of an object by sampling our la-
tent space, or by interpolating in this space (Fig. 9).

5.2. Experiments

We evaluate our appearance-aware diffusion pipeline, showcasing
applications of our disentangled appearance representation in dif-
ferent use cases. Additional results of our diffusion-based pipeline
can be found in the supplementary material (S6).

5.2.1. Qualitative Evaluation

The fact that our space is disentangled enables integrating appear-
ance information from two or more source images when perform-
ing appearance transfer. This is particularly useful for the illumi-
nation: one can perform material transfer from a source to a target

image while keeping the illumination of the target (e.g., Fig. 8, sec-
ond and third rows). Another example of selective transfer (i.e.,
transferring different dimensions from several images) beyond il-
lumination dimensions is shown in Fig. 1 (right).

We include further results of our pipeline for both appearance
transfer and editing tasks in Fig. 1 (center) and Fig. 8, using im-
ages not seen during training. In Fig. 8, for each row, we use two
reference images as input (left) and perform appearance transfer
between them (middle). Then, we modify this result by traversing
the relevant dimension(s) of our latent space, performing disentan-
gled editing (right). We show how our pipeline effectively captures
the target appearance achieving realistic results, even when the re-
flectance properties are very different between the two input im-
ages (e.g., the copper glossy material on the statue, third row). The
second and third rows further illustrate examples of integrating ap-
pearance information from two source images, as we extract the
illumination from the feature vector of one of the images (two di-
mensions) and the material from the other (four dimensions). De-
spite being trained on synthetic data, our material and illumination
appearance transfer generalizes well to real photographs. For edit-
ing, Fig. 8 shows how we can perform fine-grained modifications
for different attributes while maintaining the identity of the image.
We include an example modifying a single attribute (second row)
to show the high disentanglement of our latent space. However,
editing multiple attributes at once is also natively supported by our
pipeline, as shown in the first and third rows.

Our pipeline can also be used to interpolate between two appear-
ance feature vectors, as shown in Fig. 9. Despite significant dif-
ferences in properties such as hue or gloss between both reference
materials, the results exhibit realistic, smooth transitions.

© 2025 The Author(s).
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Figure 9: Interpolation between two materials in our latent space. The two ends of the progression show the result of transferring the
material of two real-world objects, a blue glossy spoon and a pink rough llama, to a target geometry. All results follow the illumination of
the target image. Progressively traversing our latent space results in an intuitive change of the appearance.

OursGeometry Appearance ZeST

Inputs Transfer

Figure 10: Examples highlighting the disentanglement issue in
ZeST [CSM*24] for appearance transfer. The appearance refer-
ence image of the first row is a rendering of a homogeneous bud-
dha, while the second row uses a real photograph of the Statue of
Liberty. In contrast to our method that properly disentangles ap-
pearance information from geometry, the ZeST results include geo-
metric information being transferred to the output image.

5.2.2. Benefits and Limitations for Transfer

The current state of the art in material transfer is ZeST [CSM*24].
An important difference with our approach lies in their use of a pre-
trained semantic image encoder which projects the reference ap-
pearance image into the space of CLIP [RKH*21]. This encoder is
more general than our appearance encoder, enabling ZeST to han-
dle a wider variety of appearance.

However, unlike our method, CLIP has not been specifically
trained to disentangle the appearance and geometry. As a result,
some geometric information may be transferred through the appear-
ance branch. Fig. 10 illustrates how this limitation of ZeST man-
ifests in the generation of features such as the Buddha face or the
Statue of Liberty’s facial expression, which originate from the ap-
pearance image rather than the geometry image. As a result, details
of the geometry reference image are modified or lost, and material
appearance can be influenced by image semantics (e.g., Statue of
Liberty). In contrast to CLIP, our appearance encoder explicitly en-
courages disentanglement between appearance and geometry, lead-
ing to a better performance than ZeST in this aspect (additional
results in the supplementary material). Besides, our approach can

be used to selectively transfer only certain attributes of a given set
of inputs (Fig. 1, right).

5.2.3. Benefits and Limitations for Editing

We further evaluate our appearance editing task in Fig. 11, by
comparing our results with two state-of-the-art editing methods
in image space with publicly available code (Subias and Lagu-
nas [SL23] and InstructPix2Pix [BHE23]), to highlight the benefits
and limitations of our space. For every source image and method,
we show appearance editing results by traversing two appearance
factors, one after the other. The method by Subias and Lagunas
is a GAN-based architecture trained supervisedly on specific at-
tributes, so a direct comparison is only possible for the gloss at-
tribute. InstructPix2Pix is a general image editing method condi-
tioned on instructional text prompts, not solely targeted to appear-
ance editing. While we lack such generality, compared to Instruct-
Pix2Pix, we can achieve finer-grained edits that only affect the de-
sired material, as well as an increased control over the edit. This
highlights the benefits of modeling an explicit disentangled latent
space: although InstructPix2Pix has higher generative capacity, our
approach is more suitable for controllable appearance editing. Fi-
nally, color shifts are a common challenge in generative models.
While our method is not immune to this issue, its design allows for
partial correction by manually adjusting the shifted dimensions to
achieve the desired appearance, an ability that is often lacking in
related works.

6. Discussion and Limitations

We show that we can, in a self-supervised manner and without the
need for human-annotated data, learn a disentangled, interpretable
and controllable space of appearance. We carefully evaluate the ca-
pabilities of such space, as well as alternative design decisions.

To illustrate potential uses of our space, we use it to condition
a diffusion-based generative pipeline, enabling proof-of-concept
applications: appearance transfer from one or more images, fine-
grained editing, and interpolation within the space. We show these
for real images, even though our models have been trained on syn-
thetic data. We compare to existing dedicated material transfer or
image editing methods for our sample downstream tasks. Despite
the higher generative capacity of targeted methods, which we do
not aim to surpass, our comparisons highlight the potential benefits
of our space (i.e., fine-grained control and interpretability). More-
over, our representation of appearance could have alternative ap-
plications, such as generating a certain appearance from scratch by
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Figure 11: Comparison of the appearance editing feature of our pipeline with two state-of-the-art solutions. Using a reference image (left),
we show the progression of sequentially editing two attributes (right). The disentanglement of our latent space and the design of the diffusion
pipeline allows for an intuitive and precise editing of the identified attributes.

adjusting the different dimensions (exposed, e.g., as sliders), or to
be used as a descriptor for attribute-based retrieval in large image
databases.

Our appearance encoding model is limited to the range of ap-
pearances it was trained with, namely homogeneous, opaque ma-
terials and illuminations that do not exhibit very high frequency
or strongly colored lighting. Fig. 12 shows reconstruction results
when trying to encode samples with out-of-distribution, high-
frequency illumination. Given the self-supervised nature of the ap-
proach, extension to a wider set of appearances increasing the train-
ing dataset remains as future work.

A promising direction for future research involves investigat-
ing the benefits of increasing the level of supervision in the train-
ing process. The current approach employs soft disentanglement
constraints via the total correlation (TC) term in the loss function
(Eq. 1). Still, we evaluate the disentanglement and interpretabil-
ity of our space (Tab. 1), obtaining successful results. In future
work, imposing hard constraints directly within the network archi-
tecture [KWKT15] could enable the enforcement of higher disen-
tanglement in the learned latent dimensions. This could be imple-
mented by fixing our extrinsic factors (geometry and illumination)
and learning the intrinsic properties of the material.

Further, while the dimensions of our space are interpretable and
controllable, they are not necessarily perceptually-linear, since no
supervision enforces this. Although they are independent factors
determining appearance, they may not be expressive enough and
artists could prefer to control more, or alternative, dimensions.

Figure 12: Limitations. Examples of the behavior of our autoen-
coder when reconstructing out-of-distribution appearances. The
sphere and blob samples are illuminated with high-frequency light-
ing. Reconstructing the Havran geometry using their respective em-
beddings, the model struggles and cannot recover appearance.

Alternatively to our work, using supervision could allow to con-
trol specific factors of variation (e.g., varying parameters of an ana-
lytical BRDF model). However, it would necessarily require factors
defining appearance to be defined a priori, which would introduce
some bias, and could guide the space to learn the notion of, e.g.,
specular from the underlying model used. Instead, we have focused
on self-supervised learning to investigate whether a meaningful ap-
pearance space can emerge from diverse realistic images, whose
appearance factors of variation are a priori unknown. We hope
our work inspires further exploration of self-supervised learning
approaches to uncover the underlying factors that shape our per-
ception of appearance.

© 2025 The Author(s).
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